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Abstract: The enzyme cellulase, a multienzyme complex
made up of several proteins, catalyzes the conversion of
cellulose to glucose in an enzymatic hydrolysis-based
biomass-to-ethanol process. Production of cellulase en-
zyme proteins in large quantities using the fungus
Trichoderma reesei requires understanding the dynam-
ics of growth and enzyme production. The method of
neural network parameter function modeling, which
combines the approximation capabilities of neural net-
works with fundamental process knowledge, is utilized to
develop a mathematical model of this dynamic system.
In addition, kinetic models are also developed. Labora-
tory data from bench-scale fermentations involving
growth and protein production by T. reesei on lactose
and xylose are used to estimate the parameters in these
models. The relative performances of the various models
and the results of optimizing these models on two differ-
ent performance measures are presented. An approxi-
mately 33% lower root-mean-squared error (RMSE) in
protein predictions and about 40% lower total RMSE is
obtained with the neural network-based model as op-
posed to kinetic models. Using the neural network-based
model, the RMSE in predicting optimal conditions for
two performance indices, is about 67% and 40% lower,
respectively, when compared with the kinetic models.
Thus, both model predictions and optimization results
from the neural network-based model are found to be
closer to the experimental data than the kinetic models
developed in this work. It is shown that the neural net-
work parameter function modeling method can be useful
as a “macromodeling” technique to rapidly develop dy-
namic models of a process. © 1999 John Wiley & Sons, Inc.
Biotechnol Bioeng 66: 1-16, 1999.
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INTRODUCTION

Enzymatic hydrolysis of cellulose to glucose is carried out
by the enzyme cellulase, a multienzyme complex made up
of several proteins. The fungugichoderma reeseis an
efficient producer of cellulase enzymes. Production of cel-
lulase enzyme in large quantities requires understanding and
proper controlling of the growth and enzyme production
capabilities ofT. reesei.This is an extremely complicated
system; many factors influence the organism’s ability to
grow and produce enzyme.

Strains ofT. reeseihave been studied in great detail for
more than two decades for their ability to produce the cel-
lulase enzyme complex (Esterbauer et al., 1991; Kadam,
1996; Philippidis, 1994). Most literature reports describe
experiments that have achieved a significant enzyme titer or
a high volumetric productivity. Only a few publications deal
with modeling cellulase production systems.

Most publications provide performance data for specific
strains under particular conditions without any attempt to
model the system. For example, Mohagheghi et al. (1988)
carried out a series of experiments that examined varying
the amounts of xylose and cellulose in batch culture$.of
reeseimutant RUT-C30. They also performed a series of
fed-batch experiments (Mohagheghi et al., 1990) using the
same medium constituents. Chaudhuri and Sahai (1993) ex-
amined enzyme production usifig reeseiC5 growing on
lactose in batch culture. Tangnu et al. (1981) studied the
effects of various process parameters, such as temperature,
pH, carbon sources, and substrate concentration on the ratio
of mycelial growth and extracellulose enzyme production
using T. reeseiRUT-C30. Schafner and Toledo (1992) in-
vestigated cellulase enzyme production in continuous cul-
ture byT. reesestrain QM9414 on a xylose-based medium.
They also studied enzyme production on a xylose-based
medium supplemented with sorbose (Schafner and Toledo,
1991). Lejeune and Baron (1995) assessed the effect of
agitation on growth and enzyme production By reesei
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QM9414. Hendy et al. (1984) reported using fed-batch cuI

tivation to enhance cellulase enzyme production using the Hz

RUT-C30 strain. Also, many reports have demonstrated en-

zyme production on cellulosic biomass rather than mineral- v

based media supplemented with pure carbon sources. To ( Product ]

name a few, Acebal et al. (1988) usédreeseiQM9414 to

produce cellulase from wheat straw, whereas Szengyel et al.. . . I
. . . . Figure 1. Schematic representation of the unstructured kinetic model.

(1997) studied cellulase production using hemicellulose hy-

drolyzate from steam-pretreated willow.

Modeling the growth and product formation characteris-tion of the substrate into amorphous and crystalline cellu-
tics of various microorganisms is a very challenging tasklosic components, a hemicellulosic component, and other
There are many different approaches to modeling the minondegradable components.
crobial kinetics (for an excellent review, see Nielsen and Rakshit and Sahai (1991) formulated an empirical model
Villadsen, 1992). Simplistic unstructured models (e.g., in-for growth of and enzyme production by tfie reeseimu-
corporating Monod kinetic terms or other empirical expres-tant E-12 and developed an optimal control strategy for
sions) do not offer much in terms of elucidating the exactenhancing production of the enzyme. However, they chose
nature of these processes. However, more structured moddl§t to model substrate consumption and hence their model
often involve introducing process variables that cannot bélid not consider the dependence of cell growth on the sub-
estimated reliably. Several studies dealing with modelingStrate concentration. Qhaudhurl and Sahai (1994) estlmat.ed
the growth and morphology of complex microorganismssome gr_owth and ma!ntenance parameters for ce_IIuIase bio-
such as filamentous fungi have been published in recerﬁymhes's on. ree§e|C5 and compar.ed them with some.
years (Lejeune and Baron, 1998 Nielsen, 1992, 1996). published data. Using data from continuous culture experi-

Among the publications that consider the development o{nents, they demonstrated that Monod's equation adequately

. represented the growth dynamics.
models for cellulase enzyme production, probably the most More recently, Velkovska et al. (1997) developed a ki-

comprehensive model was presented by Badgr etal (1993Aetic model for batch cellulase production by RUT-C30
who modeled the growth and enzyme production Ch""r"’mterﬂsing solka floc (purified cellulose) as the substrate. Their

istics of T. reeseiRUT-C30 using potato pulp as the cellu- 4n564ch resulted in a model that was simpler than that of
losic substrate. Their model accounted for physiologicalgsqer et al. (1993) by ignoring the actual composition of the
changes in the fungal cells that better described the enzymgzyme complex. Their model took into account the mor-
production behavior. The model also incorporated certaithhological and physiological changes that occur during
key features such as adsorption of enzyme onto the substradgowth of T reeseicells, and was structured in biomass and
leading to its decomposition and hydrolysis, followed by substrate reactivity variables but unstructured with respect
cell growth due to the uptake of the resulting simple sugarsto intracellular mechanisms and molecular species.
Another important feature in this model was the classifica- Although many data are available for strainslofreesei,
such as RUT-C30, not much work has been done in quan-
tifying the dynamics of other strains such as RL-P37. In this
Table I. Growth media composition. work, we develop three models for growth and enzyme
production byT. reeseRL-P37 on a soluble sugar substrate

rp

Component Stage 1  Stage 2 Fermentor ) N X
system (lactose and xylose). The first two are kinetic models
Salts incorporating different degrees of structure. The third is
KH,PQ, (g/L) 3.8 3.8 3.8 based on the neural network parameter function approach.
'\CASSS.ZLHSO@(?L/)L) 8'2 g'g 8'2 The motivation for using neural network parameter func-
. 2 . . . . . . . - g
(NH,),S0, (g/L) 5 5 5,75, 10, 12.5, 15 t!ons is _to improve the accuracy and pre_d|ct|ve capabili-
Trace minerals ties of kinetic models (Tholudur and Ramirez, 1996), and
FeSQ - 7H,0 (mg/L) 5 5 5 this approach has been successfully applied to protein
MnSQ, - H,0 (mg/L) 1.6 1.6 1.6 production by recombinant bacteria (Tholudur and
ZnSQ, - 7H,0 (mg/L) 1.4 1.4 1.4
CoCl, - 6H,0 (mg/L) 3.7 3.7 3.7
Protein supplementation Table Il. Estimated parameters for the unstructured kinetic model.
Corn steep liquor (% v/v) 2 2 2
Carbon source Parameter Value Parameter Value
Glucose (% w/v) 2 — —
Xylose (% w/v) — 1 1 Pmavol 0.0493 h* Y, 0.3770 g/g
Lactose (% wiv) — 1 1,2,3,4,5 Ks. 0.2346 g/L Y, 0.6842 glg
Miscellaneous Ko 50.26 g/L Ky 0.0065 h*
Tween-80 (mL/L) — — 0.2 MmaxZ 0.1253 At « 0.0409
Antifoam (mL/L) — — 0.1 Ksz 5.734 g/L B 0.0015 h*
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Figure 2. (a) Growth and production kinetics as predicted by the unstructured kinetic model (initial >xe¢ldsl wiv, initial lactose= 1% w/v). (b)
Growth and production kinetics as predicted by the unstructured kinetic model (initial xylo%&6 w/v, initial lactose= 3% wi/v). (c) Growth and
production kinetics as predicted by the unstructured kinetic model (initial xytosE w/v, initial lactose= 5% w/v).

Ramirez, 1999). Here, we report on extending the applicaMATERIALS AND METHODS
tion of this approach to cellulase production By reesei
RL-P37. ) . Microorganism
Because the neural network parameter function modeling
method can be considered a “macromodeling” approach thaftrichoderma reesdRL-P37 (obtained from B.S. Montene-
utilizes just fundamental macroscopic material balancesourt, Lehigh University) was used in this work and was
(i.e., no information on the structure of the system at thenaintained on V8-based media plates as suggested by
microscopic level is incoporated), it is reasonable to attempBchell et al. (1990).
the development of kinetic models of similar complexity for
comparison of the different approaches. Furthermore, th%ulture Medium and Cultivation
incorporation of fundamental process knowledge in the neu-
ral network parameter function modeling method makes it & two-stage preinoculum culture growth method was used.
hybrid modeling scheme and moves it out of the realm ofStage 1 consisted of a 500-mL baffled shake flask with a
pure “black-box” modeling and puts it on par with the other 100-mL working volume, and stage 2 consisted of 2000-mL
kinetic modeling methods discussed in this article. baffled shake flasks with a 350-mL working volume. One
The following sections describe the experiments con-milliliter of frozen stock culture was transferred to stage 1
ducted and the development of the three mathematical mods preinoculum, and 17.5 mL of the growth culture was then
els, followed by a comparison of the models and their apiransferred to stage 2 as inoculum for the fermentor. Table
plication to predict optimal operating conditions. | summarizes the media constituents for the various stages.

THOLUDUR, RAMIREZ, MCMILLAN: MATHEMATICAL MODELING 3



60.00 T 15.00
O Ltactose (experiment) Product
0O Xylose (experiment)

50.00 - — Model predictions
-+ 12.00

P

| lum W Primary k1 Secondary k2
noculu 1z Mycelium Mycelium Spores

kdi kdz

40.00
9.00

Lactose conc (g/L)
W
o
Q
(=}
Xylose conc (g/L)

T 6.00

20.00 A
Dead cells

+ 3.00
10.00

Figure 3. Schematic representation of the structured kinetic model.

o
0.00 °gg a @ 0.00
0.00 24.00 48.00. 72.00 96.00 120.00
Time (hours) extent than cellulose. To add complexity to the modeling
endeavor, xylose was also used, and the models were re-
quired to capture the preferential uptake of xylose over lac-
tose.
20,00 - o0 The experimental design consisted of varying the initial
Q Cels (experiment) levels of lactose with a constant initial xylose concentration.
O Protein (experiment)| 1 4,50 .. ) . . )
2500 | — Model predictions The initial xylose concentration was maintained at approxi-
p 400 mately 1% w/v and the initial lactose concentration was
20,00 | " 3:50 varied. Five fermentors with initial lactose levels of ap-

1300 proximately 1%, 2%, 3%, 4%, and 5% w/v were run. As
shown in Table [, the initial amounts of (NHSO, were
varied so as to obtain an initial C:N ratio close to 8 (grams
C:grams N).

One of the experiments (3% w/v initial lactose concen-
tration) was repeated and it was found that the growth and

-
bl
=3
=]

F2.50

Cell density (g/L)
Protein conc (g/L)

T 2.00
10.00 -
+ 1.50

5.00 T 1.00

700 protein production data reproduced fairly well. Hence, it
0.00 0.00 was deemed unnecessary to repeat the rest of the lactose
0.00 24.00 48.00 72.00 96.00 120.00 -
Time (hours} Concentrat|ons.
(c)
Figure 2. Continued. Analytical Techniques

] o All fermentations were run for 120 h. Samples of about 40
New Brunswick Scientific BioFlo 3000 fermentors m| ere taken frequently, and typically ten samples were
equipped with temperature, pH, and dissolved oxygen (DOpptained for each fermentation over the course of the ex-

volume d 3 L in 5-L vessels. Three hundred milliliters of sojyple sugar concentrations, and protein levels, as ex-
the stage 2 culture was used to inoculate the fermentors. Th@ained in what follows.

temperature was kept constant at 28°C, agitation was main-
tained at 450 rpm, and the pH was maintained at 4.8 using
concentrated NFOH and HPO,. The level of DO was Cell Mass
maintained at approximately 20% of air saturation using air i )
supplemented with pure oxygen, except for periods of rapid-€ll concentrations (as grams dry cell mass per liter [g
growth when DO levels fell below 20%. DCM/L]) were determined using preweighed Gelman glass
T. reeseican grow on a variety of substrates. However,
most strains of this fungus do not produce the cellulasg . 1.

) g o Estimated parameters for the structured kinetic model.
enzyme complex in appreciable quantities unless they are

grown on the insoluble substrate cellulose. The use of inParameter Value Parameter Value
solgble substrate Iegds to difficulties with acqurate determi- o 01008 h' K 0.0610 Rt
nation of cell mass in the presence of other insoluble com- k 0.0194 g/L K, 0.0069 ht
ponents. Thus, keeping in mind that the aim of this work K, 6.502 g/L Kqy 0.0099 h*
was to demonstrate the applicability of the neural network Y. 0.4106 qllg Kaz 0.0089 h*
parameter function modeling technique, a soluble sugar #maxz 2'382692 g g'gggg .
S.Z . -
substrate system was employed. Lactose, a soluble sugar, 0.6418 g/g

also induces the production of cellulase, although to a lesser—

4 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 66, NO. 1, 1999



60.00 T 15.00 60.00 7 T 15.00
© Lactose (experiment) O Lactose (experiment)
D Xylose (experiment) O Xylose (experiment)
50.00 — Model predictions 50.00 -—— Mode! predictions
- 12.00 12.00
40.00 P 4000
~ P —_
3 tono § & 900 3
I S e C
S 30.00 | § 83000 g
§ g g 6.00 §
1 e g 16 ]
K 600 § R £
20.00 1 20.00
4 T 3.00
10.00 ’X\A 3.0 10.00 -
g o Y
0.00 a2-86 0.00 0.00 0.00
0.00 24.00 48.00 72.00 96.00 120.00 0.00 24.00 48.00 72.00 96.00 120.00
Time (hours) Time (hours)
30.00 4 T 5.00 30.00 - 5.00
© Cells {experiment) O Cells (experiment)
B Protein (experiment)| 1 4,50 O Protein (experiment)| {1 4.50
25.00 - -~ Model predictions 25.00 - —~—— Model predictions
4.00 4.00
1350 F 3.50
20.00 20.00 1]
—_ -~ - -
) 3005 5 300 §
Z g =z g
£ 15.00 1 250 § 2 15,001 250 8
=
z ° 5 > k5
K] o © [ 2.00 g 3 2.00 2
10.00 ° 10.00 1
oo — T 150 50
° 1.00
1.00 Iy
soof O P 5.00 J
/ + 050 T 050
0.00 T T 0.00 0.00 T 0.00
0.00 24.00 48.00 72.00 96.00 120.00 0.00 24.00 48.00 72.00 96.00 120.00
Time {hours) Time (hours)
(a) (b)

Figure 4. (a) Growth and production kinetics as predicted by the structured kinetic model (initial xyld$é w/v, initial lactose= 1% w/v). (b) Growth
and production kinetics as predicted by the structured kinetic model (initial xy#0%&6 w/v, initial lactose= 3% wi/v). (c) Growth and production kinetics
as predicted by the structured kinetic model (initial xylesel% w/v, initial lactose= 5% wi/v).

fiber filters. Four milliliters of the fungal samples were tionation using a 5-mL Pharmacia Hi-Trap column packed
filtered onto the membrane, washed twice with deionizedvith Sephadex G-25. This is a modification of the method
water, and allowed to dry at room temperature underdescribed by Adney et al. (1995). A Beckman System Gold
vacuum. Triplicates of the analysis were performed for eaclHPLC system equipped with the programmable Model 126
sample to estimate the reproductability of the cell concensglvent module, Model 507 autosampler, and a Model 166

tration measurement. variable wavelength detector was used to separate proteins
from media components and low-molecular-weight pro-
Substrate teins. The Beckman System Gold software was used to

Sugar concentrations (lactose and xylose) were determindft€grate peak areas and determine peak heights. _
using an HPLC (HP 1090 with i&vSTATION software) Samples were diluted and subjected to chromatography in

equipped with a Bio-Rad organic acids column (HPX-87H,20 mM acetate, 100 M NaCl (pH 5.0) buffer. The system’s
300 x 7.8 mm) operating at 65°C. Dilute sulfuric acid autosampler was then used to inject the samples in00-

(0.01N) was used as the mobile phase at a flow rate of 0.8olumes with the flow rate maintained at 2 mL/min. Seph-
mL/min. adex G-25 has an exclusion limit of approximately 5000 Da

and can be used for the group separation of proteins >5000
Da from smaller peptides typically present in the nutrient
media. Only the void volume peak was assumed to be pro-
Protein concentrations in the culture supernatants were etein >5000 Da and was included in the total protein calcu-
timated by UV absorbance following chromatographic frac-lation calibrated using bovine serum albumin standard so-

Protein
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Parameters in the differential equations were estimated by a
Figure 4. Continued.

nonlinear least-squares routinegnonlin.m ) in the Op-
timization Toolbox (Coleman et al., 1999) of theaMAB
environment. The sum-squared error between the model
lutions. This method provides a reasonable estimation of thpredictions and the experimental data consisting of cell
total hydrolytic enzyme concentration based on the assumpnass, xylose, lactose, and protein concentrations was mini-
tion that only proteins produced by the fungus and secretethized. Because the minimization of the sum of squares for
into the culture broth, and not proteins present in the nutri-a general nonlinear problem is quite dependent on the initial
ent medium, should contribute to the absorbance in the voiguesses for the parameters, various starting points were pro-
volume of the column. vided and the final parameter set that had the lowest sum-
squared error was chosen. In addition, the initial conditions
for the xylose and protein concentrations were assumed to
MODEL DEVELOPMENT be at an average value of 10.68 g/L and 0.75 g/L (obtained

Three models of the growth and protein production dynam-by gveraging _the initial values_ for these variables from the
ics are developed in this section. various experiments), respectively.
The estimated parameters are summarized in Table II.

Unstructured Kinetic Model Model Evaluation

The performance of this model is illustrated in Figure 2,
which shows a comparison of the model predictions and
The simplest kinetic model assumes that sugars are comxperimental data for experiments carried out at initial lac-
verted into mycelial cell mass, which produces enzyme asose levels of approximately 1%, 3%, and 5% w/v. As this
shown in Figure 1. The differential equations describing thisfigure shows, the dynamics of lactose and xylose utilization
system are as follows: are captured well, but the cell mass and protein production

Model Development
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dynamics are not. Clearly, this very basic model does nofable IV. Normalization values used in the neural network model.
have enough features to describe effectively the dynamic /. .1 name

- ) . ) Symbol Normalization value
behavior of the system. In particular, the protein dynamics
are not well described. This result provides the motivationTime t 120 h
for developing a more descriptive structured kinetic model Lactose concentration L 60 g/l
Xylose concentration z 12 g/L
Cell density X 28 g/L
Protein concentration P 59g/L

Structured Kinetic Model

Model Development Parameter Estimation
The structured kinetic model incorporates a limited amouan‘ S|.m|lar procedure as outlined in the section fgr the esti-
mation of parameters in the unstructured model is followed.

of structure in the cell mass component as depicted in Fig_l_h timated i ized in Table Il
ure 3. As suggested by Velkovska et al. (1997) and Mat- € estimated parameters are summarized in Table fil.

sumura et al. (1981), cell mass is divided into three catego-
ries—primary mycelia, secondary mycelia, and spores. Th@/Jodel Evaluation
governing differential equations describing this system are

as follows: The performance of this model is illustrated in Figure 4. As
with the unstructured kinetic model, the dynamics of lactose
dL and xylose utilization are captured fairly well. Although the
gt X/ YL (8) protein dynamics track the data somewhat better than in the
unstructured kinetic model, incorporation of the different
dz cell growth stages into the model equations does not dra-
prial nzXo/ Yz (99  matically improve predictions about the dynamics of protein
production. The assumption of a particular functional form
dx, for rp in both the unstructured and structured models limits
i (e + iz = Ky = Kg) X, (10)  our ability to adequately simulate the dynamics of protein
production.
dX, Neural Network Parameter Function Model
Tt - KX~ (ke kap)Xs (11)
Model Development
dX, As presented by Tholudur and Ramirez (1996, 1999), the
T koXs 12 neural network parameter function methodology of model-
ing dynamic systems is a hybrid modeling technique that
dX dx, dX5 d uses fundamental process knowledge in the form of conser-
ot dt + dat + ot o (o + rD)X, = KXo = KapXs vation equations in combination with the function approxi-

(13) ~ mation capabilities of neural networks. Material balances on
each major component being produced or consumed in the

dp batch fermentations result in the following governing dif-
Prialins (14)  ferential equations:
dL
whereL, Z, X,andP are the lactose, xylose, cell mass, and ——=-rX (15
; . . dt
protein concentrations, respectively, aXg X, andX, are
the cell mass contributions from primary mycelia, second- dz
ary mycelia, and spores. The specific growth rates on lac- FTIRLEL (16)

tose and xylose arg, and ., respectively)Y, andY, are

the corresponding cell mass yields on lactose and xylgse.
andk, are constant rate terms for the conversion of primaryTable V. Neural network training details.
mycelia to secondary mycelia and for the conversion ofc
secondary mycelia to spores, respectivé{y. and ky, are

unction Inputs RMSE

endogenous death terms angdis the specific protein pro- r t L 3.1x10°

. e 3

duction rate. The postulated forms for the specific growth - l— LZZ « H x ig‘t
i i I Lz, Ax

rates and production rate terms are the same as in the un- o CX P 17 %104

structured kinetic model.
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dX
a = rXX (17)
dP
a = rpX (18)

whereL, Z, X,andP are the lactose, xylose, cell mass, and
protein concentrations, respectively. The modeling problem
is one of estimating the parameter functiansr, ry, and

I, which are the specific lactose consumption rate, specific
xylose consumption rate, specific cell growth rate, and spe-
cific protein production rate, respectively.

dz

Iy = /X (20)
dX

= ge/X (21)
dP

o= ge/X 22)

In the traditional kinetic modeling approaches, as pre- Training data are then generated using these relation-
sented in the earlier sections, a functional form is postulateghips. Specific algebraic input-output forms are assumed
for each function (e.g., Monod growth kinetics or a combi-for each unknown function,, r, ry, andrp. The method-

nation of primary and secondary metabolite formation), ancPlogy used to

estimate the parameter functions is described

the parameters in these functions are then evaluated. In tH@ What follows.

neural network parameter function modeling technique, the

conservation equations are rewritten and solved for the UNTime Derivative and Parameter

known functions as follows:

dL

= dt/X

(19

_rL
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Function Evaluations

For the evaluation of the parameter functions, the time de-
rivatives of the measured variables need to be estimated. To
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(a) Growth and production kinetics as predicted by the neural network-based model (initial xylb%e w/v, initial lactose= 1% wi/v). (b)

Growth and production kinetics as predicted by the neural network-based model (inital xyld8é wi/v, initial lactose= 3% w/v). (c) Growth and
production kinetics as predicted by the neural network-based model (initial xyto$&6 w/v, initial lactose= 5% w/v).

obtain these derivatives, we performed curve fits of the
original experimental data and analytically differentiated
the curve fits to obtain the derivatives. Protein production
exhibits sigmoidal functional characteristics. Lactose and The curve fit, derivative estimation, and parameter func-

xylose concentrations exhibit monotonically decreasing sigtion evaluation procedures were performed independently
moidal behavior with respect to time. Thus, a logistic curvefor each experimentally obtained data set. A sampling time
of the following form is fit for each of these variables to of 0.5 h was used during this process—that is, the deriva-
tives and parameter functions were estimated at 0.5-h inter-
vals. This leads to a training data set that consists of 1205
input—output pairs for each parameter function. Such a short
sampling time is necessary to justify the assumption of

piecewise constant parameter functions between sampling
To better explain the protein dynamics, a lag term is alsgoints. In addition, the data were first normalized by divid-

introduced (no protein production during the lag portion) toing the variables with the appropriate normalization factor

improve estimation of the derivatives. The cell mass conso that the magnitude of all the variables would be between
centration grows exponentially at first but fall once the sug-0 and 1. This helped in providing better fits of the logistic

ars are consumed. The logistic equation presented abowsuations as well as in training the neural networks in the
cannot describe these dynamics. Hence, a modified logistinext stop. Table IV summarizes the normalization values
function with one additional parameter is used:

estimate the derivatives:

V(b = G
( “1s

e—cz(t—03)

(23

that

—Ccgt
1

e-Cz(t—63)

V(t):l+

were used.
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O Xylose (experiment) Variables that were highly correlated with a particular pa-
—Modelpredictions 1 | 100 rameter function were used as inputs for the corresponding
parameter function neural network. Four neural networks
were trained—one for each parameter function. All neural
networks were trained with 20 hidden neurons (hyperbolic
tangent activation function) and 1 output neuron (logistic
activation function) for 1000 epochs. Table V summarizes
the inputs used in the neural networks and the training per-
1300 formances achieved. A lower root-mean-squared error
(RMSE) implies a better training performance. In addition,
it is of interest to note the use ofas one of the inputs for
0.00 & 0.00 . . . .
0.00 24.00 48.00 7200 96.00 120.00 three of the networks, the exception bemgThe inclusion
Time (hours) of time has been observed earlier with the inducible bacteria
systems (Tholudur and Ramirez, 1999).
The performance of the neural networks is also illustrated
in Figure 5, which compares the network performance with
3000 - - s00 the actual training data for each network. The figure shows
2 Prote coperment| | 450 that the parameter function neural networks capture the
training data well.
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Once the neural network parameter functions are trained,
the next step is to examine the predictive capabilities of the

Cell density (g/L)
G
o
o
~N
3
Protein conc (g/L)

10.00

T 150 complete model. This is summarized in Figure 6. As can be

soo ] 1 100 seen, in addition to capturing the dynamics of lactose and
Loso xylose consumption, the neural network-based model de-

000 , ‘ 000 scribes the dynamics of cell growth and protein production
0.00 24.00 48.00 72.00 96.00 120.00 well. Comparison of Figures 2, 4, and 6 shows that the

Time (hous) neural network-based model best captures the dynamics of
() the system among the models presented. In addition, the
Figure 6. Continued. predictive capabilities of the neural network-based model
on the remaining experimental data are shown in Figure 7.
Quantification of the predictive capabilites of the various
models is summarized in Table VI where the RMSE of the
models for each of the state variables is presented. The

After estimating the dynamic response data, the next step %onsstently lower RMSE for the neural network model sug-

: . o ests that this model is more accurate than the kinetic mod-

to train the parameter function neural networks to mimic the?
training data. Because the parameter functions are statie™
mappings (between the parameter functions and the mea-
sured variables), feedforward neural networks were chosefjnTERPOLATED PARAMETER FUNCTIONS
A key issue in neural network training is the concept of
generalization. A measure of the ability of the neural net-The development of kinetic and neural network parameter
work to predict based on data it has not seen before is thiinction models for describing the dynamics of cell growth
generalization error (Geman et al., 1992; Moody, 1992). Aand cellulase enzyme production was presented in the pre-
lower generalization is always desirable. One method fowious section. The performance of these models on the ex-
improving generalization is to use a process known as regyerimental data was demonstrated. The optimization
larization. The MTLAB Neural Network Toolbox (Demuth method used in the next section to obtain optimal opera-
and Beale, 1998) provides a routine that trains neural netional conditions requires the model predictions at interme-
works using a combination of Bayesian regularizationdiate conditions as well (i.e., for initial lactose concentra-
(MacKay, 1992) and Levenberg—Marquardt (Hagan andions other than those for which experiments were con-
Menhaj, 1994) optimization. This routingrginbr.m ) ducted). In the case of the kinetic models, this is a trivial
was used to train the neural network parameter functions.task because of the assumption of continuous parameter

The choice of inputs for each network is another keyfunctions. However, in the case of the neural network pa-
issue. A correlation coefficient of all the data was estimatedameter function models, the neural network might not be

Neural Network Training
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Figure 7. (a) Growth and production kinetics as predicted by the neural network-based model (initial xylb%e w/v, initial lactose= 2% wi/v). (b)
Growth and production kinetics as predicted by the neural network-based model (initial xyld8é w/v, initial lactose= 4% w/v).

able to predict reasonable values for some of these condsay, 3.7% w/v, a weighted average of the parameter func-
tions. tions for the two nearest experimental points (3% and 4%)
The concept of interpolated parameter functions is useis used. This is different than a weighted average of the
to obtain dynamic profiles of the states for conditions otherprofiles. The interpolated parameter function method pro-
than those for which experiments were conducted. For exvides us with a means to use the neural network parameter
ample, in this study, experiments were conducted at initiafunctions with very few experiments. This methodology is
lactose concentrations of approximately 1%, 2%, 3%, 4%summarized next.
and 5% wi/v. The neural network parameter function model Assume thalN experiments are conducted by varying the
works extremely well for these initial conditions. To obtain initial conditionsC;, j = 1, 2, 3,...,N. The parameter
the dynamic response for an initial lactose concentration offunctions profiles,F;(t), are obtained for these conditions
using the techniques just explained. To obtain the parameter

Table VI. Quantification of the predictive capabilities of the various

models. Table VII. Parameters used in the performance index expressions.
Root-mean-squared error Parameter Value
Model name Lactose Xylose Cell Mass Protein  Total \ 3L
C. $0.15/Ib.
Unstructured kinetic  1.3887  0.6039 0.9518 0.2113 1.8011 C;, $4/b.
Structured kinetic 1.3478 0.6129 0.9603 0.2047 1.7766  Qpax 0.0615 g/(L- h)
Neural network 0.4202 0.4560 0.9204 0.1346  1.1179 P,ax 12g
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function profile,F,(t), for an initial condition,C,, determine 5

M (1 =M = N - 1) such thaC,, = C, = Cy,,. Then, J‘VQmaX“L(l_V) P
definek = C, - C,/Cyu.1 — Cym- The interpolated function

is defined ask(t) = (1 - k)Fu(+ kFy.4(t). Repeat this  whereQ,,,, andP,,,, are normalization factors correspond-
process for all the parameter functions. These interpolateghy to maximal productivity and protein amount agds a
parameter functions are then used in the goveming differparameter that expresses the relative weightings of the two
ential equations, which are integrated to provide the dy'performance indices.

namic profiles of the states for the intermediate initial con- £ the purpose of illustration, the parameters in Table

dition. ) ) ) N VIl were used to calculate values of the three performance
The main advantage of this approach is the ability to;qq. expressions.

obtain accurate interpolated information with a minimum of 1. Lasuits of the optimization of the performance indi-
experimental data. For the neural networks to be able Qg J,
interpolate directly would require a great deal more experi '
mental training data sets.

(27)

andJ,, using the three process models, are summa-
rized in Figure 8. This figure clearly shows the existence of
different and competing optima for the two performance
indicesJ; andJ,. For example, thd, andJ, contours for the
unstructured kinetic model suggest that the optimum for
maximizing J, is at about 5.5% wi/v initial lactose and a

One objective for developing predictive dynamic models oflin@l time of 120 h, whereas the optimum for maximiziig
processes is to use these models for process optimizatiof$, &t about 5.5% w/v initial lactose and a final time of 78 h.
Optimization requires identifying the critical process vari- Similarly, the contours for the structural kinetic model sug-
ables, formulating performance indices that reflect the in-9est an optimum fod, at about 5.5% w/v initial lactose
teractions among these variables, and finally choosing &Vvel and a final time of 120 h, whereas the optimumdpr
Strategy to maximize or minimize the performance indices_is at a similar lactose level but a reduced final time of about
In this particular process, two performance indices can b&3 h. And, finally, the contours obtained using the neural
readily formulated, involving lactose, protein, and time asnetwork model suggest an optimum of about 3.5% w/v ini-
the critical variables. The first performance indéy, bal-  tial lactose and a final time of 120 h for maximizidg but
ances the estimated protein value against the cost of lactog® optimum of about 5.4% w/v initial lactose and a final

MODEL OPTIMIZATION

and can be written on a total protein basis as: time of about 78 h for maximizing,. Table VIII summa-
rizes the optimal conditions obtained for each of these in-
C. dices.
J =PV - C_p L(to)V (29) Comparison of the protein profiles predicted by the mod-

els shows that the unstructured and structured kinetic mod-

whereP(t) is the protein concentration at tinhel (t,) is the  els exhibit significantly slower dynamics than seen in the
lactose concentration at timte= 0, V is the fermentation experimental data. Hence, optimization of these dynamic
volume, andC, andC; are the cost of lactose and value of performance indices using these models is not expected to
protein, respectively. Thus, this performance index provideprovide accurate results. Considering that the dynamic be-
a measure of the tradeoff between the value of the proteihavior of the system is best captured by the neural network
and the operating cost of using lactose as a carbon soureeodel, it is expected that the results of optimizing the neural
and expresses the result in terms of net valuable protein (ghetwork model be most accurate among the developed mod-

Another important performance index is the averageels. This is further demonstrated in Figure 9, which com-
volumetric productivity of the system. Due to the absencepares the performance indices predicted by the models with
of significant protein production during the first 24 h of the experimental data. In Figure 9a, the values of the per-
the fermentation, the productivity performance index is deformance indexJ;, as predicted by the various models at a
fined as: fixed final time of 120 h and as a function of the initial
lactose concentration are shown. In Figure 9b, the values of
the performance index,, as predicted by the various mod-
els at a fixed initial lactose concentration of about 5.5% wi/v,
and as a function of time, are shown. The neural network-
This performance index has units of grams per liter per houbased model predicts performance index profiles that are
[g/(L-h)]. closest to the experimental data. For the performance index

It is possible (and often very probable) that the optimapredictions shown in Figure 9, the root-mean-squared errors
resulting from either of these two performance indicesare calculated and summarized in Table IX. Once again, the
would be different. Under such conditions, it might be nec-neural network-based model has the lowest RMSE in the
essary to arrive at a compromise. A weighted overall peroptimal performance index predictions. As a result, it can be
formance index of the following form can then be consid-concluded that the opimization results from the neural net-
ered: work-based model are closest to the true optimum.

_P() - P(t=24)

, n t=24 (26)
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Figure 8. (a) Contour plots of the two performance indices using the unstructured kinetic model. (b) Contour plots of the two performance indices using
the structured kinetic model. (c) Contour plots of the two performance indices using the neural network-based model.

CONCLUSIONS as opposed to the kinetic models. Optimal conditions for the
operation of the batch system were identified to demonstrate
The development and comparison of traditional kineticthe practical applicability of modeling and optimizing sys-
modeling and neural network parameter function modelingem performance using the neural network parameter func-
as applied to a biotechnology process involving the production modeling techniques. Once again, a comparison with
tion of cellulase proteins has been presented. Experiment#he experimental data revealed that the neural network-
data were used in the estimation of parameters in the variousased model predicted optimal conditions that were closer
models. The models were developed using a similar amourib the experimental observations than the other models. Us-
of prior knowledge of the process (in terms of basic materiaing the neural network-based model, the RMSE in predict-
balances). The predictive capabilities of the neural networking the J, andJ, preformance indices were about 67% and
based model were superior to the unstructured and strué0% lower, respectively, when compared with the kinetic
tured kinetic models developed. This is borne out by themodels.
consistently lower RMSE values in the model predictions The neural network parameter function modeling scheme
for the process state variables. An approximately 33% lowedoes suffer from the drawback that it does not provide any
RMSE in protein predictions and about 40% lower totalinsight into the underlying mechanisms that describe the
RMSE was obtained with the neural network-based modesystem. A similar observation can be made for the unstruc-
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Figure 8. Continued.

sg:\ble to be developed quite rapidly, thus enabling quicker

tured kinetic model. Of the three models developed in thi e
optimization of the process.

work, the structured kinetic model is probably the best in S o
terms of describing the underlying phenomena. However, A simplified system utilizing soluble sugars as the carbon

the neural network based method has the advantage of beirfgurce for the organism was used in this work. Currently,
we are working on applying the modeling principles outlined

in this work to a more complex insoluble substrate system.
Table VIIl.  Optimal conditions predicted by the different models.

Optimal Table IX. RMSE values for the performance index predictions in Fig-
conditions ure 9.
Performance  Maximum L(to) t Performance Prediction
Model name index value (o) () Model name index RMSE
Unstructured kinetic J; 6.49 g 54.70  120.0  ypstructured kinetic J; 0.70¢9
Structured kinetic N 6.80g 54.70  120.0  gyryctured kinetic 3 0.749
Neural network J; 6.56 9 3325 1200 Neyral network 3 0.21g
Unstructured kinetic J, 0.0302g/(L+h) 5470 78.0  ynstryctured kinetic J 0.0049 g/(L- h)
Structured kinetic J, 0.0319g/(L- h)  54.70 83.0  structured kinetic J, 0.0048 g/(L- h)
Neural network J, 0.0336g/(L-h) 54.08 780  Neyral network J, 0.0031 g/(L- h)
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